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Abstract—System-on-Chips (SoCs) are designed using differ-
ent Intellectual Property (IP) blocks from multiple third-party
vendors to reduce design cost while meeting aggressive time-to-
market constraints. Designing trustworthy SoCs need to address
the increasing concerns related to supply-chain security vulner-
abilities. Malicious implants on IPs, such as Hardware Trojans
(HTs) are one of the significant security threats in designing trust-
worthy SoCs. It is a major challenge to detect Trojans in complex
multi-processor SoCs using conventional pre- and post-silicon
validation methodologies. Packet-based Network-on-Chip (NoC)
is a widely used solution for on-chip communication between IPs
in complex SoCs. The focus of this paper is to enable trusted NoC
communication in the presence of potentially untrusted IPs. This
paper makes three key contributions. (1) We model an HT in NoC
router that activates misrouting of the packets to initiate a denial
of service, delay of service, and injection suppression. (2) We
propose a dynamic shielding technique that isolates the identified
HT infected IP. (3) We present a secure routing algorithm to
bypass the HT infected NoC router. Experimental results on
HT infected NoC demonstrate that the proposed method reduces
effective average packet latency by 38% in real benchmarks and
48% in synthetic traffic patterns. Our method also increases
throughput and reduces effective average deflected packet latency
by 62 % in real benchmarks and 97 % in synthetic traffic patterns.

Index Terms—Hardware Trojan, Network-on-Chip Security

I. INTRODUCTION

With the widespread commercialization of safety-critical
real-time systems, semiconductor industries have started pay-
ing more attention to robust hardware-based security. Due
to time-to-market and cost considerations, many products
still rely on the supply chain to perform various activities,
including design automation of specific components as well
as manufacturing of integrated circuits. Functional security of
these devices can be compromised due to the involvement of
potentially untrusted third-parties during the design cycle [1]
[2]. While there are various forms of supply-chain vulnerabil-
ities, malicious implants in circuits, also known as Hardware
Trojans (HTs) [3] [4], is one of the major security threats
in modern System-on-Chips (SoCs). These HTs can create
security vulnerabilities as well as functional inconsistencies
in the SoC [1]. Some of the HTs are hard to detect, subtle
in their operation and are sophisticated to the extent that they
can even bypass the root-of-trust techniques that secure device
firmware [2] [5]. Given that SoCs are used in a wide variety of
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embedded and IoT devices, it is critical to enable trustworthy
computing using potentially untrusted components in SoCs.

Packet-based Network-on-Chip (NoC) provides the on-
chip communication infrastructure for modern Multi-Processor
System-on-Chips (MPSoCs). NoC provides connectivity be-
tween a wide variety of components in an MPSoC such as
processor cores, GPUs, memories, converters, controllers, 1/0,
etc. Today’s NoCs provide more emphasis on performance,
scalability and backward compatibility than security [6] [7].
Due to its positional advantage, NoC is a prime target for
attackers to insert HTs. Consequently, NoC routers, being the
communication backbone of MPSoCs, becomes most vulner-
able to security threats. HT infected NoC routers can lead
to denial of service [8], information leakage [9], high jack-
ing [10], unauthorized memory access [11], etc. They directly
or indirectly result in bandwidth depletion and performance
degradation of the entire system. Detection and mitigation
of HTs on NoCs impose unique challenges [12] [13]. One
of the popular HTs that exists in an NoC router misroute
packets to trigger a DoS attack [14]. A runtime detection
algorithm that uses the incoming direction of the packets
detects the location of such HT infected routers. However,
it assumes that the operating system will provide shielding
to ensure protection. Such a hardware-software solution can
lead to unacceptable performance overhead, whereas a simple
hardware-only approach will give a better action response.
Motivated by the impact of such an HT infected NoC router
and the limitations in the existing work, we propose an HT
threat model with runtime detection as well as mitigation at
the hardware level. To the best of our knowledge, there are
no prior efforts that consider runtime detection, shielding and
bypassing of NoC based Trojans at the same time.

In this paper, we model an HT on an NoC router that
misroutes packets in the network and initiates DoS attack
on a specific set of processing elements. Furthermore, mis-
routing packets at times also create injection suppression that
propagates across various routers, taking the system to a near
halt. To secure NoC from such misrouting HTs, we propose a
technique called Trojan Aware Routing (TAR), which consists
of three main phases. In the first phase, we deploy a runtime
detection mechanism that tracks for routing violation and
exposes the HT infected NoC router. After detection, the
second phase employs a dynamic shielding mechanism that
isolates the HT infected NoC router from the rest of the
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Fig. 1: 8x8 mesh NoC with an HT at router 35

network. With the shielding enabled, the third (final) phase
uses a bypass algorithm that route packets in the network
isolating the HT infected NoC router. In this paper, we make
the following significant contributions:

« We implement packet misrouting on NoC to model an
HT that leads to denial of service, delay of service, and
injection suppression.

e Our Trojan-aware routing dynamically detects a misrout-
ing HT, shields it and route packets bypassing it.

o We experimentally demonstrate that our approach effec-
tively mitigates DoS and injection suppression.

II. THREAT MODEL

In our threat model, we consider an HT that tampers the
routing algorithm employed in NoC routers to enable mis-
routing. When triggered, the HT maliciously assigns a wrong
output port to the head flit of a packet. As a result, all the flits
of that packet also get misrouted due to wormhole routing.
This can move the packet away from its destination and can
cause either denial of service (DoS) or injection suppression
or both. DoS is a scenario where a packet gets indefinitely
delayed in the path and never reaches its destination. Injection
suppression scenario is a by-product of DoS where new flits
cannot be injected into the network due to unavailability of
router input buffers. Sometimes the packet may reach the
destination after few cycles of extra delay. Usually, NoC
packets carry cache miss requests, cache miss replies, evicted
cache blocks, and coherence messages. An infected NoC
router with the proposed HT can misroute these packets and
degrade the application-level performance of latency-critical
applications. Such type of HTs can be added to an NoC IP at
any of the phases of an IC life cycle, including specification
phase, design phase, and fabrication phase [3] [15].

In this work, we assume that the proposed HT enters the
NoC IP during the pre-silicon stage, either by an attacker
having access to the system design or by an untrusted third
party EDA tool. An adversary can activate any number of such
HTs in the NoC. However, activating multiple HTs can create

an unusual variation in energy and power consumption and
hence may be easily noticed (detected). To make it hard to
get detected, we model the NoC with HT deployed in a single
NoC router. The detection is made even harder by assuming
that the proposed HT is intermittently malicious and internally
triggered [3] [16]. The proposed HT threat model is as follows:
An NoC packet P can be represented as:

P = {F}ZL) ad || Flf)odyl H Fl;:)odyQ || || Flf) H Ft:l;il} (1)

e odyn

where F} are the flits of packet P such that:

Fhoua = [{SRC, DEST, CTRL_MSG}]
F!inody = [{CTRL_MSG}, {Data}]

F} . = [{CTRL_MSGY}, {Data}]

Path of packet P from source to destination can be given as:
P = {Rsrm CEEEE Rdest} (2)

where R; denotes router 7 on the NoC. Let RA; denote the
routing algorithm employed in router R;. We can infer from
Equation (1) and (2) that for a packet P,

<. Rk—la Rka Rk)-‘rla

RAk(F}fead) = Rk+1 (3)

where for packet P, the routing algorithm employed in router
R;, will assign the next router as Ry1.

Let HT denotes our proposed threat model such that

HT(RAy) = RA} and
RAZ (Fi{,)ead) = R;;Jrl where
RZ+1 7£ Rk+1

Consider an 8x8 mesh NoC shown in Fig. 1. Based on the
location of HT (router 35, shown in red), we divide the
NoC into eight regions: N, FE, S, W, NE, SE, SW and
NW . When triggered, the impact of HT varies based on the
source and destination regions of packets. We categorize the
behaviour and impact of the proposed HT threat model into
two cases. We explain them using two specific examples.
Case 1: Consider a packet P1 with source S1 on its way to
destination D1 reaches router 35 as shown in Fig. 2. Instead
of forwarding P1 to router 43 as per XY routing, the HT
misroutes P1 to router 34. P1, upon reaching router 34,
follows XY routing, and reaches back to router 35. Note that
destination D1 is at router 59 which is on the same column
as that of HT infected router 35. As per XY routing, P1 can
reach destination D1 only through router 35, which is infected.
Hence router 35 will always misroute and P1 can never reach
destination D1, leading to a DoS like attack on NoC. From
Fig. 1 we can see that source S1 is in region F and destination
D1 is in region N. Thus, inter-region communication of type
E — N will create a DoS like scenario here. To generalise,
for all inter-region communication where the destination router
is on the same column as that of HT infected router 35, a
DoS attack like scenario will arise. A DoS attack like scenario
arises when there is a packet movement between the following
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Fig. 2: Illustration of diverse HT impacts

regions: F - N, E—= S, W —-N, W—-S5 NE-—=S,
NW — S, SE— N, SW — N.

In this illustrative example, packet P1 will be trapped in
a ping-pong behaviour between router 35 and its neighbor
routers 27, 34, and 36 since router 35 will never forward P1
to router 43. Packets are buffered in VCs of routers while
taking part in routing and arbitration decisions. Prolonged
ping-pong of P1 leads to VC unavailability in neighboring
routers and propagates the effect to others by back-pressure.
Eventually, a scenario of injection suppression arises in the
entire system. When the traffic is high, unavailability of NoC
resources due to the ping-pong effect also leads the system into
a deadlock. Fig. 3 shows how the proposed HT threat model
creates injection suppression in an 8 x8 NoC while running the
uniform_random synthetic traffic. As injection rate increases,
the impact of the proposed HT escalates, and results in more
injection suppression and eventually a deadlock.

Case 2: Consider another packet P2 in Fig. 2 with source
S2 on its way to destination D2 reaches router 35. Instead of
forwarding P2 to router 36 (as per XY routing), the activated
Trojan at router 35 misroutes P2 to router 27. Following XY
routing, router 27 now forwards packet P2 to router 28. Since
the destination D2 is not in the same column as that of router
35, packet P2 can eventually reach the destination. However,
getting misrouted by router 35 delays the arrival of packet
P2 at destination D2. This is a scenario of delay of service
attack. From Fig. 1 we can see that source 52 is in region
W and destination D2 is in region NE. Thus inter-region
communication of type W — N E creates a delay of service.
To generalise, a delay of service attack like scenario will arise
when there is a communication between the following regions:
E—-W, E-NW, E—-SW W —=E, W —= NE,
W — SE.

III. TROJAN AWARE ROUTING (TAR)

Our proposed TAR technique is employed in every router
on NoC. TAR involves three phases: Detection, Shielding, and
Bypass. The working of these phases is described as follows:
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Fig. 3: HT triggered injection suppression

A. Phase 1: Trojan Detection

We use XY routing where a packet travels along the X
direction and reach the same column as that of destination.
Then, the packet travels along the Y direction to reach the
destination. Let P be a packet with source S(z1,y1) and
destination D(z2,y2). As per XY routing, when P reaches
an intermediate router R(x,y), it will be forwarded along X
direction until (x < 22). When P reaches a router where
(x == x2), it changes the direction and starts travelling along
Y direction until (y < y2). When P reaches a router where
(y == y2), it reaches destination D(z2,y2). The XY routing
algorithm decides the output port for a packet based on the
position of destination router with respect to the current router.
The routing algorithm does not consider the input port of the
packet and its previous router for its routing decisions. Our
proposed HT threat model exploits this feature of the routing
algorithm and enables misrouting. Now, even if a packet is
misrouted and reaches a router where it should not have
reached as per XY routing, the employed routing algorithm
will never be able to detect it. The packet will be forwarded
to destination without knowing the misrouting that lead the
packet to this router.

To identify packet misrouting and HT infected router, we
add a detection module, a 1-bit alert_flag and a 3-bit alert_dir
at every NoC router. alert_flag is set only if the neighbor
is identified as an HT infected router and reset otherwise.
alert_dir either denotes no direction or the direction where the
HT is detected; north, east, south, or west. In the illustrative
example shown in Fig. 2, packet P1 is forwarded to router
34 because of the misrouting at router 35. With the detection
module in place, router 34 knows that P1 has entered through
east input port from router 35. Analyzing the position of
destination D1 at router 59 with respect to router 35, the
detection module concludes that XY routing is violated and P1
is misrouted. Router 34 sets its alert_flag and updates alert_dir
as east since router 35 misrouted packet P1 and hence must
be an HT infected router. alert_flag and alert_dir are also used
in the subsequent phases of shielding and bypass routing.

B. Phase 2: Dynamic Shielding

Once the HT is detected by one of its neighbors (27, 34, 36,
or 43), a dynamic shielding protocol is activated. The router
that detects the HT, generates a special alert flit to be sent
to its neighbors about the detection of the HT. We call such
routers as generators. Neighbors upon receiving the alert flit
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Fig. 5: Working of dynamic shielding in TAR

propagates the message further by creating a propagation flit.
We call such routers as propagators. The structure of these
special flits is very similar to normal flits, as shown in Fig. 4.
Alert flit contains a 1-bit msg_dir indicating the direction
an alert flit needs to be forwarded by generators. A 3-bit
DHT _alert_dir indicates the direction an alert flit needs to be
forwarded by propagators. The alert message also contains a 3-
bit NHT _alert_dir which indicates the direction where the HT
is detected. Fig. 4 presents all the possible values for different
fields of the alert flit. When the message of HT detection is
propagated among all the neighboring routers using alert and
propagation flits, each router accordingly updates its alert_flag
and alert_dir. This results in a shield creation around the
HT that successfully isolates the HT infected router from the
rest of the network. The third and final phase of TAR uses
this shielding to route packets by bypassing the isolated HT
infected router.

With an illustrative example shown in Fig. 5, we explain the
working of our dynamic shielding phase. From the previous
phase of HT detection, let us assume that router 34 has
identified router 35 as an HT infected router. alert flag in
router 34 is now set to 1 and alert_dir as 100 (East). As
shown in Fig. 5, router 34 generates two alert flits, Gy and
Ggs. With an alert message {msg_dir = 0, DHT _alert_dir =
100, NHT _alert_dir = 011}, alert flit Gy is forwarded from
router 34 to router 42, where msg_dir = 0 indicates Gy to be
forwarded in clockwise direction. DHT _alert_dir = 100 (East)
in Gy indicates that upon reaching router 42, the message
needs to be propagated in East direction. Router 42 generates
a propagation flit P with an alert message {msg_dir = 0,
DHT _alert_dir = 000, NHT _alert_dir = 011} to be forwarded

Fig. 6: Working of bypass algorithm in TAR

to router 43. When Pg reaches router 43, NHT _alert_dir =011
(South) indicates that the HT is detected in South direction
of router 43; which is router 35. alert_flag and alert_dir are
updated as 1 and south respectively in router 43 which can be
a generator for other neighbors. Similarly, Gg and Py also
propagates the message of HT detection to other neighbors.
Here, 27, 34, 43, and 36 are generator routers and 26, 42,
44, and 28 are propagation routers. The message propagation
continues from both sides until a logical shield is created
around the HT infected router. In this example, the shield is
completed when alert_dir is set for router 27 as north, router
34 as east, router 43 as south, and router 36 as west. After the
end of dynamic shielding, the detected HT infected router is
isolated from rest of the network.

C. Phase 3: Trojan Bypass

The final phase of TAR implements a bypass routing
mechanism, as presented in Algorithm 1. When a packet
arrives at a router, bypass mechanism checks the alert_flag
and alert_dir of that router. Only if the alert_flag is set and
alert_dir matches with the desired output port direction of the
packet, bypass routing is activated. In all other cases, a packet
follows normal XY routing to reach its destination.

We explain the working of Trojan bypass algorithm with an
illustration, as shown in Fig. 6. We consider the same example
as that in Fig. 2 for the sake of simplicity and continuity. A
packet P1 with source S1 on its way to destination D1 reaches
router 36. After the completion of shielding in the previous
phase, router 36 has its alert_flag set and alert_dir as west.
As per XY routing, the desired output port of packet P1 at
router 36 is west which matches with the alert_dir of router
36. Now the Trojan bypass algorithm initiates and reroutes
packet P1 away from the HT infected router 35 as presented
in Part I of Algorithm 1. Packet P1 is rerouted from router 36
to router 44, and Part II of Algorithm 1 is initiated since 44 is
a propagation router. Now, packet P1 is forwarded from router
44 to router 43, and from there it directly reaches destination
D1 at router 59.
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Algorithm 1: Trojan bypass

Input : Packet header

Output: Output port direction of a flit

Terminology

xq;zy: x difference between destination & current router.

yaify: y difference between destination & current router.

in_dir: Input port direction of a flit.

out_dir: Output port direction of a flit.

mazxCredit(out_diry, out_dir2): returns out_dir with more VCs.
/*Part I: Mitigation by generator routers */

if alert_flag is SET then

ifa:diff #0 && Ydif f # 0 then

if alert_dir # EAST then

if xg;pp > 0 && in_dir # EAST then
L out_dir = EAST

else if alert_dir # W EST then
if xq;r5 < 0 && in_dir # WEST then
L out_dir = WEST

else if alert_dir == EAST || WEST then
if yq;77 < O then

I out_dir = SOUTH
else

L out_dir = NORTH

else if z4;7y == 0 then

if (yaipy > 0 && alert_dir == NORTH) ||

(yaiff <0 && alert_dir == SOUTH) then
| out_dir = maxCredit(EAST, WEST)

else if yq; 7y == 0 then
if (xqi55 > 0 && alert_dir == EAST) ||
(zairr < 0 && alert_dir == WEST) then

| out_dir = maxCredit(NORTH,SOUTH)

else if alert_dir # NORT H then
if ygipp > 0 && in_dir # NORTH then
L out_dir = NORTH

else if alert_dir # SOUTH then
if ygipp <0 && in_dir # SOUTH then
L out_dir = SOUTH

*Part II: Mitigation by propagation routers */
else if alert_flag is RESET then
if ($diff < 0 && in_dir == WEST) ||
(zqiff > 0 && in_dir == EAST) then
if yq;77 < O then
L out_dir = SOUTH
else
L out_dir = NORTH

else if Z'dziff < 0 && in_dir == SOUTH then
7

~

L out_dir = WEST
else if z4;77 > 0 && in_dir == NORT H then
L out d];r = EAST

Since destination D1 is in the same column as that of HT
infected router 35, it becomes impossible for P1 to reach D1
using the conventional approach and resulted in a DoS like
scenario. With the Trojan bypass algorithm in place, now P1
can reach its destination, thus mitigating the impact of DoS.
Since packet like P1 is not trapped in the network anymore,
our bypass routing also diminishes the possibility of injection
suppression. Similarly, packet P2 with source S2 on its way
to destination D2 reaches router 34. Instead of forwarding to
router 35 which is HT infected, router 34 reroutes P2 towards
router 42. The Trojan bypass algorithm rerouted packet P2
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in such a way that it reaches destination D2 without any
additional delay. Hence, the delay of service scenario created
by the proposed HT threat model is mitigated by intelligent
bypassing. Please note that router 35 misroutes only those
packets that are passing through it. Hence, even after bypassing
is activated, the packets whose source/destination is router
35 will continue to come out of/go into router 35, thus not
hampering the application executing in the infected core. Due
to the nature of runtime detection, when an HT is detected, it
might have already misrouted first few flits of some packets
while rest of the flits are on the way. Intuitively, it seems that
the bypassing algorithm will not allow the rest of the flits to
travel to the HT infected router in order to avoid misrouting.
However, this situation will not arise since only the head flit
takes part in routing and arbitration. Hence, if a head flit is
already misrouted before HT detection, all the following flits
will go through the same route. After HT detection, when such
a misrouted head flit comes out of the HT infected router due
to the ping-pong effect, it will never enter the HT again due
to the employed bypassing. Hence, even misrouted flits will
eventually reach their respective destination.

Rerouting packets using the bypass algorithm violates nor-
mal XY routing and creates a possibility for network deadlock.
To ensure deadlock prevention, we employ the concept of
intermediate destination [17]. When packet P2 is rerouted
from router 34 to router 42, it starts travelling in the Y
direction. However, when it travels from router 42 to router 43,
P2 violates XY routing, since turning X from Y direction is
prohibited. Using the concept of intermediate destination [17],
router 42 is made the new destination for packet P2. Now,
after getting rerouted from router 34, packet P2 reaches router
42 and gets ejected into its local output port, since 42 is the
new destination. Only after router 42 finds out that P2 is
meant for destination D2 at router 62, it re-injects P2 as a
new packet destined for D2. Packet P2 now follows normal
XY routing like any other packet to reach the destination. The
ejection of packet P2 and re-injection as a new packet from
the intermediate destination 42 makes sure that XY routing is
not violated thus eliminating deadlock.

IV. EXPERIMENTS

We evaluate the performance of TAR using effective average
packet latency, effective average deflected packet latency,
throughput, and injection suppression avoidance.

A. Experimental Setup and Workloads

We implement the baseline system (normal NoC without
any HT), NoC with an HT infected router, as well as the
proposed TAR using the event-driven simulator, gem5 [19].
We use the garnet framework in gem5's ruby memory model
for implementing the NoC. Our baseline system is a traditional
8x8 2D mesh NoC with 5 VCs per input port and uses
a 128-bit flit channel for inter-router communication using
XY routing. To model the Trojan, we modify the routing
module such that there exists a single HT router in the NoC
at any given point in time. The shielding approach and bypass
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TABLE I: Workload categorization using SPEC CPU 2006 benchmark mixes.

Workload Workload Pattern: name of benchmark (number of instances) ‘Workload Characteristics

Ml leslie3d (16) Ibm (16) GemsFDTD (16) mcf (16) 100% High MPKI

M2 sjeng (16) bzip2 (16) omnetpp (16) sphnix (16) 100% Low MPKI

M3 soplex (32) astar (32) 100% Medium MPKI

M4 leslie3d (8) | bzip2 (8) | omnetpp (16) | sjeng( 8) [ GemsFDTD(8) | Ibm (8) [ mcf (8) | 50% High MPKI, 50% Low MPKI
M5 sjeng (8) bzip2 (8) | sphnix (16) soplex (16) astar (16) 50% Low MPKI, 50% Medium MPKI
M6 leslie3d (8) | bzip2 (8) | omnetpp (16) | sjeng( 8) [ soplex (8) astar ( 16) 50% High MPKI, 50% Low MPKI
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Fig. 7: Performance analysis with synthetic traffic patterns. For latency plots given in (a), (b), (d), & (e), lower the line better
and for throughput plots in (c) & (f), higher the line the better.
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algorithm is done in garnet with all micro-architectural and
functional specifications, as discussed in Section 3.

To evaluate the performance and NoC-specific parameters,
we run standard synthetic traffic patterns uniform_random,
and bit_complement by varying the injection rate. We also
analyze the proposed system using real application workloads
consisting of SPEC CPU 2006 benchmarks. We model a 64-
tile TCMP, each with a simple CPU core and a 32 KB, 4-
way set associative, 64-byte block, private L1 cache. Each tile
has a 256 KB, 16-way associative, 64-byte block, shared L2
cache. L2 cache sets are mapped to various tiles using the
SNUCA technique. We assign a SPEC CPU 2006 benchmark
application to each of the 64 core to model a TCMP simulation

framework. L1 cache misses trigger NoC packets, which get
routed from the source tile to the destination tile to which the
corresponding L2 cache sets are mapped. Similarly, the reply
packets also travel through the NoC. We use a 1-flit request
packet and 5-flit reply packets.

We study the performance of the NoC under different
network loads by grouping the SPEC CPU 2006 benchmarks
based on their Misses Per Kilo Instructions (MPKIs). We
classify the benchmarks into High MPKI (greater than 40),
Medium MPKI (less than 40 but greater than 20), and Low
MPKI (less than 20). Here we use leslie3d, Ibm, GemsFDTD,
and mcf under High MPKI, soplex and astar under Medium
MPKI, and sjeng, bzip2, omnetpp, and sphinx under Low
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MPKI. With the help of this classification, we form six
categories of workloads; M1, M2, M3, M4, M5, and M6, each
having 64 benchmark instances, as given in Table I.

B. Effective Average Packet Latency

To analyse the effect in packet latency with HT triggering
and mitigation, we use average packet latency (APL), which
is defined as the number of cycles required for a packet to
reach its destination. As the average packet latency on an
HT infected NoC shows inconsistent values at higher injection
rates due to packet loss and injection suppression, we apply a
more realistic metric effective average packet latency (EAPL)
[16] which is defined as follows:

EAPL = APL % Packets_Ejectedyithout HT

Packets_FEjected,ithur @
Fig. 7a and 7d shows the effective average packet latency
using uniform_random and bit_complement traffic patterns. As
expected, when the injection rate increases, packet latency also
increases in the baseline, HT infected NoC, and TAR. But we
observe that the rate of latency increase in the case of HT
infected NoC is significantly higher than the other two. This
is due to the deflection of packets by HT router and subsequent
DoS as well as the delay of service scenario. However,
TAR reduces effective average packet latency significantly
compared to HT infected NoC. Since TAR uses HT bypassing
to secure communication, the majority of packets that are
supposed to travel through the HT have to take an extra few
hops to reach the destination. Thus, we note an increase in
effective average packet latency for synthetic traffic patterns
by 16% compared to baseline. We also analyze the effective
average packet latency using real workloads as shown in
Fig. 8a. Across all benchmark mixes, HT triggering increases
packet latency by an average of 87% over the baseline. TAR
exhibits a reduction in the effective average packet latency
by 38% with respect to HT infected NoC, but a minor 7%
increase with respect to baseline due to bypass routing.

C. Effective Average Deflected Packet Latency

Average deflected packet latency (ADPL) is defined as the
average packet latency of those packets which are meant to
travel through the HT infected router. Consider a router R
that is going to be HT infected. To calculate the ADPL in the
baseline, we consider the packets that are passing through R.
In the case of an HT infected NoC, ADPL is calculated for
only those packets that suffer Trojan-induced deflection at R.
For calculation of ADPL in TAR, we consider the packets
that are deflected by the neighbors of R while applying the
bypass algorithm. Similar to effective average packet latency,
to get meaningful latency values, we use effective average
deflected packet latency (EADPL) which is defined as follows:

EADPL — ADP L Deflected_Packets_FEjectedyithoutHT

Deflected_Packets_Ejectedwithb((g)

Fig. 7b and Fig. 7e shows the effective average deflected
packet latency using uniform_random and bit_complement
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Fig. 9: Virtual channel (VC) availability

traffic patterns, respectively. We observe that as the injec-
tion rate increases, effective average deflected packet latency
increases significantly on the HT infected NoC. With HT
triggering, few packets deflected by HT enter into a ping-pong
state between its neighbors. Eventually, some of these packets
move out of this state and reach the destination. This leads to
an increase in the deflected packet latency. As the injection rate
increases, this ping-pong effect reduces the available router
buffers, which, in turn, increases the deflected packet latency.
We observe that TAR reduces the effective average deflected
latency significantly with the help of a bypassing algorithm.
While analyzing the results, we observe that TAR reduces
average deflected packet latency by 97% compared to HT
infected NoC. However, due to the bypass-induced deflection
of packets, TAR shows an average of 38% increase in the
deflected packet latency over the baseline.

We also analyze effective average deflected packet latency
in real application workloads using SPEC CPU 2006 bench-
mark mixes, as shown in Fig. 8b. Experimental results show
that across all benchmark mixes, TAR reduces the average
deflected packet latency by 62% over HT infected NoC, and
increases by 40% over the baseline.

D. Throughput

We also analyze the impact of HT on the throughput of
NoC. Throughput is defined as the number of packets that
have reached its destination per router per clock cycle. In
baseline and TAR, almost all injected packets are ejected after
passing through the NoC, whereas in HT infected NoC this
delivery rate is less than 75%. Here few packets are stuck
in the routers due to the ping-pong effect. This leads to a
lack of free VC buffers in neighboring routers and can block
new packet injections. This injection suppression together
with ping-pong effect reduces the throughput. Our analysis
(Fig. 7c and Fig. 7f) shows the difference in throughput across
various techniques. In the case of real benchmark simulations
(Fig. 8c), across various mixes, HT infected NoC receives an
average of 80% fewer packets compared to baseline. However,
TAR suffers only 6% throughput reduction over the baseline.

E. Injection Suppression Avoidance

Due to the ping-pong effect, the number of packets pro-
cessed around the HT infected router is very high. This can
block the router VCs of HT, its neighbors and subsequent
back pressure leading to injection suppression, as shown in
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Fig. 3. We study the average number of input VCs available
on the NoC router during continuous time intervals T1 to TS,
while simulating uniform_random traffic at pre-saturation load
and the results are given in Fig. 9. We observe that as the
simulation progresses, the impact of HT results in a fewer
number of input VCs being available in the routers. When the
simulation reaches close to T4, input VC availability becomes
zero, which indicates the injection suppression in the whole
network. TAR ensures that none of the packets is under DoS
attack, and the packets are deflected by its one-hop neighbor
with the help of our shielding approach. This keeps the input
VC availability as close as possible to the baseline, which
prevents injection suppression in the network.

F. Overhead Analysis

Timing Overhead: We implement the standard 3-stage
pipelined input buffered router where the stages are (1) buffer
write and route computation, (2) VC allocation and switch
allocation, and (3) switch traversal. The detection module used
in TAR works in parallel with the route computation stage
to identify whether the previous router is HT infected. Our
dynamic shielding phase is completely independent and works
in parallel with the normal router operation. Trojan bypass
routing is an additional feature in the existing XY routing
algorithm which works in the route computation stage. Since
none of the phases of TAR execution lies in the critical path
of the router pipeline, we confirm that TAR enabled NoC can
function at the same operating frequency.

Hardware Overhead: An additional circuitry is used for
the detection and mitigation of HT. 1-bit alert_flag and 3-bit
alert_dir used in each NoC router incurs a storage overhead
of 4-bits per router and only 32B (4-bits x 64-core) for the
entire system. We use DSENT [18] to evaluate the area and
power of 8x8 2D mesh NoC with TAR. In DSENT, we use
22nm processor technology at 1GHz operating frequency. The
addition of a detection module and alert flit generator incur
a negligible area overhead of 2.78% and a leakage power
overhead of 3% compared to the baseline router.

V. RELATED WORK

Several survey articles [2] are published about threats and
challenges associated with securing hardware systems. Re-
searchers in the hardware security domain are adopting new
technologies for securing NoC based MPSoCs [19]. The data
protection technology [11], which is suitable for dynamic
and reconfigurable systems, ensures secure memory access in
NoCs. Li et. al. [3] discusses various on-chip and off-chip
monitoring techniques for HT attacks that could affect the
behavior and performance of ICs. Travis et. al. [12] presents
an HT model that generates DoS attack by inspecting the links
in NoC. The system makes use of the vulnerabilities of the
error correction code to cause the DoS attack. It is configured
with a switch-to-switch mitigation technique to obfuscate the
data in the packet. Three-layer protection mechanism [8],
which uses data scrambling, data integrity protection, and node
obfuscation technique, can be used to prevent side-channel

attacks by HTs located in NoC routers. HT models can also
target vital fields in an NoC packet. A pre-planned shuffling
pattern can impede these attacks in runtime [20]. There exist
HTs that infect IP to launch attacks such as DoS, flooding to
waste bandwidth, and high communication latency, which can
result in network saturation [21]. These can be detected and
localized by monitoring packet arrival curves.

VI. CONCLUSION

NoC technology gained popularity in MPSoCs due to its
ability to separate transport, transaction, and physical layers.
The security of NoC routers is vital. An HT infected NoC
router can deteriorate the performance of applications running
in the system. In this work, we model an HT that performs
misrouting and lead to DoS, delay of service, and injection
suppression in the network. We proposed a Trojan-aware
routing that can effectively detect and bypass Trojan infected
components to enable trusted communication in the presence
of untrusted components. Experimental results show that TAR
mitigates such HT attacks with graceful degradation in system
performance. The proposed system improves throughput and
shows a substantial reduction in average packet latency and
deflected packet latency compared to HT infected NoC.
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