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Abstract—Outsourcing Intellectual Properties (IPs) from ven-
dors around the globe exposes System-on-Chip (SoC) designs
to malicious implants like Hardware Trojans (HTs). Carefully
crafted HTs with extremely rare trigger conditions evade conven-
tional validation. While Machine Learning (ML) based validation
increases detection accuracy, they themselves are vulnerable to
Trojan attacks. Available detection and mitigation techniques fall
short when an HT is capable of affecting multiple components of
an SoC. This paper proposes an intermittent and robust HT that
can attack the Network-on-Chip (NoC), the shared cache, and the
cores, all at once. The proposed HT is mounted in the Network
Interface (NI) of a malicious IP and can be triggered by specific
inputs. Experimental evaluation shows that the proposed HT can
increase packet latency by 3.44x (affecting the NoC), increase
miss penalty by 15% (affecting the cache) and decrease system
speedup by 10% (affecting the cores). Moreover, this paper also
discusses why state-of-the-art defence mechanisms are insufficient
to tackle the proposed HT and suggests better solutions.

Index Terms—Hardware Trojan (HT), System-on-Chip(SoC),
Network-on-Chip (NoC), Last-Level Cache (LLC).

I. INTRODUCTION

To reduce design costs and meet aggressive time-to-market
constraints, System-on-Chip (SoC) manufacturers outsource
Intellectual Properties (IPs) from different vendors around the
globe. This supply-chain exposes SoC designs to malicious
implants like Hardware Trojans (HTs). Typically, there are two
critical parts in a Trojan, trigger and payload. An example
Trojan in Figure 1 shows that a trigger with 2 logic gates
is added to the original 4-input circuit. The trigger is usually
created using one or more extremely subtle events (rare inputs,
signals, transitions). Once triggered, the payload initiates the
attack, like information leakage, Denial-of-Service (DoS),
performance degradation, etc. In the example, out of the 16
(24) combination, only when the input is 1101 (unlucky 13),
trigger is activated, and the payload inverts the original output.

The exponential growth of input combination space in
modern SoCs coupled with carefully crafted HTs makes it
infeasible for conventional simulation based validation to de-
tect Trojans [1] [2]. Machine Learning (ML) based validation
offers better detection, but they are computationally expensive,
and themselves are susceptible to Trojan attacks [3]. Moreover,
if an HT is capable of attacking multiple components of an
SoC, even the existing detection and mitigation techniques will
fail to locate and neutralise it. To launch such an attack, the
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Figure 1: An example Hardware Trojan with trigger (red gates)
and payload (blue gate). Only when the input is 1101, the
trigger is activated, and the payload inverts the original output.

Trojan must be inserted in a place that has access to multiple
SoC components. This is the motivation for the proposed HT.

A. Threat Model

Due to the long and distributed supply-chain, HT like
implants can be inserted into the Register-Transfer Level
(RTL) or netlist of an IP from different access points. There
are practical scenarios of Trojan insertion by Computer-Aided
Design (CAD) tool, by designer or at the foundry by re-
verse engineering [4][5]. Network-on-Chip (NoC) facilitates
communication between the IPs and has access to all the
components of an SoC. Hence, it is more vulnerable to attacks,
as a malicious IP can simply eavesdrop NoC packets to
extract information without the need of hacking into individual
IPs [6]. This work considers that the proposed HT is mounted
on the Network Interface (NI) of the malicious IP, which
connects it to the NoC IP (refer Figure 3). Sitting on the NI,
the Trojan is able to attack the NoC, the shared Last-Level
Cache (LLC) and other core IPs, all at once. The proposed
Trojan attacks the SoC for performance degradation; however,
based on intentions, it can always be used for other attacks.

B. Research Contributions

The proposed HT is named as LOKI1, which is very
mischievous in the sense that it sits on one IP but affects
multiple components of the SoC, without actually hacking
them. Specifically, the major contributions of this work are:

1) LOKI selectively duplicates NoC control packets to
attack three SoC components. Using duplicate control
packets to attack multiple components without hacking
into them is a first of its kind in NoC based SoCs.
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2) We show that when the attacker triggers LOKI, packet
latency, miss penalty and system speedup are severely
affected thereby degrading the overall SoC performance.

3) When multiple components are attacked at the same
time, state-of-the-art defence mechanisms fall short to
locate and isolate LOKI. Towards the end, we discuss
possible ways to tackle LOKI-like malicious implants.

II. RELATED WORK AND MOTIVATION

A. State-of-the-Art

Attackers typically use shared on-chip resources like LLC
and NoC as a backdoor to gain access to the victim processes,
applications and IPs. One of the earliest attacks on LLC
called Prime+Probe tries to identify the cache line eviction
pattern of a victim process by creating conflicts to steal sen-
sitive information [7]. Other popular attacks on LLC includes
Flush+Reload [8], Flush+Flush [9], and Streamline [10]. Being
the communication backbone, NoC’s positional advantage
makes it a prime target for attackers. Moreover, its distributed
nature eases attack replication and amplification. For example,
a Prime+Probe like side-channel attack is also proposed in
NoC, where its infrastructure is used to monitor the con-
tents of the shared LLC [11]. There are a wide variety of
Trojan based attacks launched on NoC based SoCs like,
eavesdropping [12][13], data integrity [14], information leak-
age [15][16], DoS [17][18], delay-of-service [19][20], perfor-
mance degradation [21][22], etc. Except [16], all other works
actively use NoC resources to launch their attacks on the SoC.
[16] proposed an attack called SIM+THANOS, which mounts
the HT on the NI of one IP and steals information for an
accomplice thread hiding in another IP. The proposed Trojan
LOKI is mounted on the NI of one IP and attacks multiple SoC
components without other resources or accomplices, making
it difficult to detect by state-of-the-art techniques.

B. Motivation

IPs communicate with each-other by exchanging messages,
having a header and a payload2, as shown in Figure 2.
The header contains necessary information, including source
(SRC), destination (DEST), memory address (ADDR), mes-
sage type (TYPE), etc., for the message traversal, whereas the
payload carries data. There are two types of messages, control
and data, and the payload remains empty in control messages
as they are used to request data or send coherence messages. In
an NoC based SoC, when a source (IPSRC) wants to commu-
nicate with its destination (IPDEST ), it forwards the message
to the NI (blue IP node), as shown in Figure 3. NI converts
the message (yellow) into either a control or a data packet
(brown) and forwards it to the router to travel through the NoC
and reach destination. Similar steps in reverse are followed
to receive the message at the destination (green IP node).
Different techniques are proposed to encrypt (and decrypt)
the messages and prevent data stealing in modern NoC based
SoCs [23][13]. Usually, only the payload of the message (or

2Message payload and Trojan payload are entirely different
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Figure 2: Structure of a message exchanged between IPs.

packet) is encrypted as the header information is required for
routing and arbitration decisions in the NoC. In other words,
only the data packets are encrypted as control packets do not
carry any payload. Our proposed Trojan LOKI exploits this
vulnerability to duplicate control packets in the NI to attack the
SoC. LOKI is carefully crafted to get triggered only with read
request packets (refer Section III-A). The existing information
leakage attack from NI, SIM+THANOS [16] ignores the
possibility of encryption and duplicates data packets. To the
best of our knowledge, this is the first attempt to use read
request packets to attack multiple SoC components.
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Figure 3: Communication between IPs in an NoC based SoC.

III. LOKI: DESIGN AND DEMONSTRATION

In this section, we first present the design of LOKI, includ-
ing the circuit diagram of a possible way of inserting it into the
NI. Then, we take multiple example scenarios to demonstrate
how LOKI attacks and impacts multiple SoC components.

A. LOKI Design

As shown in Figure 3, NI is responsible for converting a
message into a packet and vice-versa. Due to limited NoC
channel width, a packet is divided into multiple smaller units
called flits. A head flit carries the message header, and multiple
body flits ended by the tail flit carries the payload. An NoC
control and data packet can be represented as:

P i
CTRL = {F i

Head} (1)



P i
DATA = {F i

Head | F i
Body0

| . . . | F i
Bodyn−1

| F i
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Figure 4: Insertion of the proposed Trojan LOKI in NI.

Figure 4 shows a possible way of inserting the proposed
Trojan LOKI into the NI of an IP node. Usually, NI employs
the Packetiser and De-Packetiser modules for the source and
destination IP nodes, respectively. LOKI is inserted in the
Packetiser and hence we omit the details about the De-
Packetiser module in Figure 4. When NI receives a message
from the source IP core, the Packet Generator sub-module
converts it into a packet. The Flit Generator sub-module then
converts the packet into one or more flits and stores them in
the circular Flit Queue. Stored flits are inserted into the NoC
router to travel towards their respective destination IP nodes.

As proposed in [17], a backdoor Kill Switch (KS) is used
to trigger LOKI and initiate the attack. Packet Type (PT)
provides the message type (TYPE from Figure 2), and Flit
Type (FT) provides the type of flit (head, body or tail). We
target read requests as they are control packets with just one
head flit (refer Equation 1), thus less storage overhead to store
a duplicate. LOKI uses a buffer of 1-flit size and can store
only one duplicate read request packet at any given point
of time. As shown in Figure 4, only when PT = READ,
FT = F i

Head and KS = EN 3, LOKI gets triggered and
copies a head flit (read request packet) from the Flit Generator
sub-module into its buffer. LOKI then keeps inserting this
duplicate flit into the Flit Queue until KS = DS. Please note
that the duplicate flit is inserted only in the free locations to
avoid interrupting the usual flow of inter IP communication.

B. LOKI Demonstration

As shown in Figure 5, let us consider an NoC based SoC
with 2-levels of on-chip caching. L1 instruction (L1I) and data
(L1D) caches are private to each IP core, whereas L2 is shared

3READ = Read request, EN = Enable, and DS = Disable

and distributed and is the Last-Level Cache (LLC). When an
IP core encounters an L1 cache miss, it needs to communicate
with the LLC to get the data block. Since LLC is distributed as
multiple banks, the destination LLC bank could be anywhere,
from the nearest to the farthest IP node. This is when the L1
Cache Controller (L1 CTLR) sends a request message to the
NI intended for the destination LLC bank. Upon receiving such
a request, the destination LLC bank Controller (LLC CTLR)
sends a reply message with the corresponding data block.

Let us consider that LOKI is mounted on the NI of the IP
node shown in blue in Figure 5, and is now triggered by the
KS. We take two example scenarios to demonstrate how LOKI
launches the attack on multiple SoC components at once.
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Figure 5: Demonstration of the attack launched by LOKI.

1) Scenario 1: IPSRC1 (blue) requests a data block B3

and encounters an L1 cache miss. The corresponding L1
CTLR forwards a read request message RQ1 to the NI for
the destination LLC bank at IPDEST (green) where B3 is
cached. The destination LLC CTLR sends the requested data
block with a reply message RP1. When LOKI is active, it
copies RQ1 from the Flit Generator into its buffer and keeps
inserting this duplicate request in free locations of the Flit
Queue. These duplicate requests reach the destination, and
the LLC CTLR treats them like genuine by replying with
RP1. Since IPSRC1 and IPDEST are sufficiently spaced, the
duplicate requests and replies (red) spread over the entire SoC.
This kind of scenario increases contention in the routers and
links, resulting in increased packet latency (affecting the NoC).

2) Scenario 2: While Scenario 1 (III-B1) is in progress,
IPSRC2 (brown) sends a read request message RQ2 to
IPDEST for the data block B7. According to the mapping
strategy (say modulo 4) employed in the destination LLC bank,
B3 and B7 are in the same set. Now, due to frequent requests
for B3 by duplicate RQ1, B7 could be evicted from the
bank. In fact, the LLC CTLR enters a thrashing phase where
useful blocks are evicted to service duplicate requests. Future
requests for these B7-like evicted blocks encounter LLC miss,



Table 1: Workload mixes

Mix Benchmarks Copies Characteristics

M1 GemsFDTD
1×16: 16

high MPKI
M2 astar medium MPKI
M3 cactusADM low MPKI

M4 GemsFDTD, lbm, xalancbmk, gobmk

4×4: 16

100% high MPKI
M5 astar, sjeng, omnetpp, sphinx 100% medium MPKI
M6 cactusADM, gromacs, perlbench, hmmer 100% low MPKI
M7 GemsFDTD, xalancbmk, astar, omnetpp 50% high MPKI, 50% medium MPKI
M8 astar, omnetpp, cactusADM, perlbench 50% medium MPKI, 50% low MPKI
M9 cactusADM, perlbench, GemsFDTD, xalancbmk 50% low MPKI, 50% high MPKI

Table 2: System configuration

Processor 16 OoO x86 cores
L1 Cache 16KB×16, 4-way, 64B blocks, private, split

L2 Cache (LLC) 256KB×16, 8-way, 64B blocks, shared
NoC 4×4 2D mesh, 4-VCs/port, 128-bit flit channel

Routing 2-stage routers, X-Y dimension-order routing
Packets 1-flit control packets, 5-flit data packets

Benchmarks SPEC CPU2006 (multi-programmed)

which increases the miss penalty (affecting the caches).
From the increase in packet latency and miss penalty, it is

intuitive that sources like IPSRC2 will suffer from delayed
instruction execution. It has a cascading effect since delayed
execution means delayed commit and thus delayed issue of
new instructions. This decreases the system speedup (affecting
the core). Even though LOKI is mounted on a single NI, it
is capable of affecting multiple components without directly
intruding in them, thereby paralysing the entire SoC.

IV. EXPERIMENTAL ANALYSIS

We consider the following two architectures for evaluation:
• Baseline: Without any Trojan.
• LOKI: With the proposed Trojan on NI of one IP node.

A. Simulation Setup and Workloads
Baseline and LOKI architectures are modelled on event-

driven gem5 simulator [24], and the system configuration is
given in Table 2. We modify the GARNET [25] interconnec-
tion module inside gem5 to model LOKI and mount it on the
NI of IP core 5 of a 4×4 NoC based SoC (similar to Figure 5).

To evaluate and analyse the attack, we consider multi-
programmed SPEC CPU2006 benchmarks to mimic a modern
NoC based SoC running multiple applications in parallel. We
select benchmarks that show varying Misses Per Kilo Instruc-
tions (MPKIs) and categorise them as high (MPKI ≥ 40),
medium (20 ≤ MPKI <40), and low (MPKI < 20). Table 1
presents the workload mixes, where M1 through M3 run 16
copies of the same benchmark on all the 16 cores (1×16:
16). Whereas M4 through M9 run a random combination of
4 different benchmarks with 4 copies each (4×4: 16). All the
workloads are run with 5 different combinations (application to
core mapping) and the average of each of them are reported.
For a relative comparison of the evaluation metrics, all the
results are normalised with respect to the baseline architecture.
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Figure 6: Normalised average packet latency

B. Impact on NoC

The number of cycles required for a packet to reach from
source to its destination is called packet latency. Figure 6
shows the normalised average packet latency when LOKI
is active. Duplicate request and reply packets create NoC
congestion and increase average packet latency by 3.44x.
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C. Impact on Caches

Figure 7 shows the normalised LLC misses when LOKI
is active. We observe that duplicate requests create an in-
termittent probing of the same data block in the LLC bank,
which results in the eviction of the genuine blocks. Hence,
LLC misses increase across all the workloads with an average
of 7%. Significant increase of more than 15% is observed in



workloads M5 and M6, as they are made of medium and low
MPKIs. Due to low packet injection rate in M5 and M6, LOKI
is able to inject more duplicate requests into the Flit Buffer.
Workloads M2 and M3 also inject many duplicate requests,
but the impact on LLC bank is less, as all the cores run the
same benchmark with minimum interference (refer Table 1).

SPEC CPU2006 Benchmark Mixes

N
or

m
al

is
ed

 L
1 

C
ac

he
 M

is
s 

Pe
na

lty

0.8

0.9

1.0

1.1

1.2

1.3

M1 M2 M3 M4 M5 M6 M7 M8 M9 AVG

Baseline LOKI

Figure 8: Normalised L1 cache miss penalty

The number of cycles required to service an L1 cache miss
by bringing in the requested data block is called L1 cache miss
penalty. With the increase in number of LLC misses, L1 cache
miss penalty is bound to increase, as the missed data blocks are
now fetched from the off-chip main memory. Figure 8 shows
a maximum of up to 36% and an average of 15% increase in
L1 cache miss penalty among the evaluated workloads.
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D. Impact on Cores
An increase in packet latency and L1 cache miss penalty

directly impacts instruction execution time. We use Instruc-
tions Per Cycle (IPC) to compare the system speedup between
baseline and LOKI. A maximum of up to 20% and an average
of 10% decrease in system speedup can be seen in Figure 9. It
shows how LOKI is able to attack multiple SoC components
indirectly and bring down the overall system performance.

V. SENSITIVITY AND OVERHEAD ANALYSIS

A. LOKI vs An Existing Trojan
A recently proposed Trojan in NoC router alters the destina-

tion (DEST in Figure 2) in the header of packets to attack an
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SoC for performance degradation [21]. For ease of reference,
we call that work as Packet Header Attack Trojan (PHAT).
Since they considered L1 cache miss penalty as one of the
evaluation metrics, we compare LOKI and PHAT with the
same. To have a fair comparison, we identify that cactusADM
and hmmer benchmarks dominated their workloads and thus
consider workload M6 for analysis. As shown in Figure 10,
LOKI has a greater impact on the L1 cache miss penalty
without any direct presence on the NoC or the shared cache.
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B. LLC Misses vs L1 Cache Miss Penalty

To understand the relationship between LLC misses and L1
cache miss penalty, we choose to dissect workload M9, which
performs the worst in system speedup (refer Figure 9). We
show a core-by-core distribution of LLC misses and L1 cache
miss penalty of M9 in Figure 11. Except in core 5, the relation
between LLC misses and L1 cache miss penalty is almost
uniform. The high spike in core 5 is due to the presence of
LOKI in its NI. This is owing to the unnecessary delay by
duplicate reply packets in the coherence protocol buffer.

C. LLC Misses vs Block Re-Reference

When an evicted LLC block is requested again in the near
future, it is called block re-reference [26]. Using the same
workload M9, we conduct an analysis to understand how the
increased LLC misses on genuine block requests affect the
number of their re-references. Figure 12 shows that the number
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of block re-reference linearly increases across cores with the
increase in LLC misses, with an average of 16%. This increase
is relatively less in core 5, as the duplicate block requests from
this core evict genuine blocks and not the other way around.

D. Timing and Area Overhead

We use ProNoC [27], that facilitates prototyping of NoC
based SoCs. The baseline and LOKI architectures are mod-
elled in Verilog for which ProNoC generates the equivalent
RTL. Vivado HLS 2020.2 webpack targeting Xilinx Kintex
UltraScale FPGA board is used to synthesize the RTL. LOKI
has a negligible increase of 0.29% LookUp Tables (LUTs) and
1.26% FlipFlops (FFs) while meeting the timing constraints.

VI. DISCUSSION ON DETECTION AND MITIGATION

The use of KS prevents logic testing from the accidental
triggering of LOKI during the verification process [17]. As
LOKI is intermittent and affects multiple SoC components
indirectly, locating its position is difficult. For example, any
existing detection technique employed in NoC, LLC or even
the cores will not be effective [17][18][19]. Prevention and
mitigation techniques like obfuscation, encryption, anonymous
routing, etc., work well with eavesdropping, data integrity and
information leakage attacks, but not LOKI [15][12][13]. This
is because LOKI uses control packets for the attack, and they
are usually not modified, as the header information is required
at every intermediate router for making routing and arbitration
decisions. If a technique to mask the header is proposed,
unmasking it at every router along the way will fall in the
critical path of execution thereby increasing the packet latency.

The mitigation technique proposed in SIM+THANOS [16]
can not directly tackle LOKI as the header information remain
unchanged. However, a similar approach that involves gener-
ating a unique message identity between a pair of source and
destination can be explored at the IP cores. In this direction,
a Packet Leak Detection Unit (PLDU) [28] that generates a
unique tag for every packet can also be tried. A modified
version of packet certification from [15] can be implemented
to counteract LOKI. Another way of tackling LOKI and other
SIM+THANOS-like Trojan attacks could be using something
like a Miss Status Handling Register (MSHR) at the NI.

VII. CONCLUSION

This work introduces an HT that has minimal presence yet
maximum impact in an NoC based SoC. In a first of its kind,
the proposed Trojan uses control packets to attack the NoC,
the shared cache and the core IPs to degrade overall system
performance without directly intruding in any of them. Being
selective and intermittent in nature, detection and mitigation
of the Trojan pose unique challenges for future exploration.
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