Cell adhesion to substrate
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Focal adhesions

 Two sets of protein modules

strucutral module - proteins
connecting the integrins to the
actin cytoskeleton - talin, vinculin,
and tensin etc. - their turnover was
found to depend on the stiffness of
the extracellular matrix

signaling module - FAK and
paxillin etc. - high turnover rates
and their mobilities were largely
unaffected by extracellular matrix
stiffness

Actin regulatory layer
& contractile machinery
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Integrin
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Integrin activation

| extracellular space

ligand-induced extension & adapter-induced
head-piece opening extension
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Integrin activation
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On integrin-ligand binding and

activation

 they start to form clusters
 further assemble into larger integrin
clusters to enable cell adhesion
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Protein interactions
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Molecular clutch

Actin polymerization leads to formation of
protrusions

Actin polymerization can push membrane
forward if it is anchored

In the absence of anchoring — actin is pushed
back --> retrograde flow

Anchoring is provided by FA proteins between
integrins and actin --> clutch

Retrograde flow
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Role of myosin
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Mechanosensing

* Cell-matrix adhesions are considered mechanosensitive, as their size, composition,
and signaling capacity are known to be affected by mechanical load and substrate
stiffness

* In cellular mechanosensing, a mechanical signal is received by a mechanoreceptor,
which is capable of translating the signal into a chemical cue

* Three levels of mechanosensing
* The regulation of integrin conformation
* the catch bond between fibronectin and integrins
* intracellular adapter proteins



Mechanosensing
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Mechanotransduction
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Hippo-YAP/TAZ pathway

* The Hippo signaling pathway regulates organ size.
* The core of Hippo pathway is comprised of two highly conserved kinases — YAP and TAZ
* These two are transcriptional co-activators to drive gene transcription.
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Rho/ROCK pathway

e The Rho GTPases are small GTPases RTKs

GPCR
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Model of YAP/TAZ activi
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